Monday, January 09, 2012

Torpor update 2

Increased thermogenic capacity of brown adipose tissue under low temperature and its contribution to arousal from hibernation in Syrian hamsters:

Brown adipose tissue (BAT) is thought to play a significant physiological role during arousal when body temperature rises from the extremely low body temperature that occurs during hibernation. The dominant pathway of BAT thermogenesis occurs through the β3-adrenergic receptor. In this study, we investigated the role of the β3-adrenergic system in BAT thermogenesis during arousal from hibernation both in vitro and in vivo. Syrian hamsters in the hibernation group contained BAT that was significantly greater in overall mass, total protein, and thermogenic uncoupling protein-1 than BAT from the warm-acclimated group. Although the ability of the β3-agonist CL316,243 to induce BAT thermogenesis at 36°C was no different between the hibernation and warm-acclimated groups, its maximum ratio over the basal value at 12°C in the hibernation group was significantly larger than that in the warm-acclimated group. Forskolin stimulation at 12°C produced equivalent BAT responses in these two groups. In vivo thermogenesis was assessed with the arousal time determined by the time course of BAT temperature or heart rate. Stimulation of BAT by CL316,243 significantly shortened the time of arousal from hibernation compared with that induced by vehicle alone, and it also induced arousal in deep hibernating animals. The β3-antagonist SR59230A inhibited arousal from hibernation either in part or completely. These results suggest that BAT in hibernating animals has potent thermogenic activity with a highly effective β3-receptor mechanism at lower temperatures.